

## RECENT ADVANCEMENTS IN HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY METHODS FOR SIMULTANEOUS QUANTIFICATION OF HYDROQUINONE, TRETINOIN, AND SALICYLIC ACID IN DERMATOLOGICAL FORMULATIONS

Vineeta Kashyap<sup>\*1</sup>, Garima Avasthi<sup>2</sup>

Research Scholar<sup>1</sup>, Professor<sup>2</sup>, Goel Institute of Pharmacy and Science, New India Canal, Faizabad Road Lucknow - 226028, Uttar Pradesh, India.

### Article History

Received: 02 July 2025  
Revised: 15 July 2025  
Accepted: 12 August 2025  
Published: 25 September 2025

### Correspondence should be addressed to

Vineeta Kashyap,  
Research Scholar,  
Goel Institute of Pharmacy and  
Science, New India Canal, Faizabad  
Road Lucknow - 226028, Uttar  
Pradesh, India.

Email- kashyapvineeta37@gmail.com

**ABSTRACT:** Quantification of active components in dermatological formulations, especially, Hydroquinone, Tretinoin and Salicylic Acid is also an important element of pharmaceutical quality control. These two ingredients are usually used together to treat skin diseases including hyperpigmentation, acne, and psoriasis because of the complementary properties. This review will examine the current developments in the Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) methods of simultaneous analysis of the three actives. The main aspects to be focused on are column choice, mobile phase optimization, wavelengths of detection and outcomes of method validation. The development of Ultra High-Performance Liquid Chromatography (UHPLC) which has been observed has greatly accelerated speed and sensitivity of analysis through the use of smaller particle sizes and faster run time and the development of advanced detectors like Photodiode Array (PDA) detectors has also enhanced the ability to detect several compounds simultaneously. Moreover, there is a move in trends towards green chromatography and automation which is making the methods of analysis increasingly sustainable and efficient. However, issues like complexity of matrices, co-elution and degradation of actives are present and thus there is still need to develop more on stability-indicating techniques and measuring all the three actives simultaneously in one technique. This review highlights the importance of these innovations towards enhancing the effectiveness, safety, and regulatory conformance of dermatological procedures.

**Keywords:** Hydroquinone, Tretinoin, Salicylic Acid, RP-HPLC, UHPLC, Dermatological Formulations

## I. INTRODUCTION

Simultaneous determination of various active components in dermatological formulations is critical towards their effectiveness, safety and regulation. Since topical treatments can be used to treat chronic skin conditions, it is important to keep the right proportions of active ingredients to ensure that the required therapeutic results are achieved without experiencing any of the side effects. Topical formulations are complex in nature with various excipients and different delivery systems and as such, highly sensitive and reliable analytical methods are used [1]. The quantification of active ingredients in dermatological products can now be considered to be the gold standard with the High-Performance Liquid Chromatography (HPLC) specifically the reverse-phase (RP-HPLC) because of the precision, sensitivity, and the capability to separate complex mixtures. RP-HPLC provides the benefit of being able to analyze multiple components simultaneously with great precision, which is of significant benefit both in time and resource savings [2].

The use of Hydroquinone, Tretinoin and Salicylic Acid in topical agents is particularly in synergy with one another in

treating hyperpigmentation, acne and psoriasis. Hydroquinone is an effective depigmenting agent, used to treat such disorders as melasma and age spots. A retinoid, Tretinoin stimulates cell turnover and decreases comedones, thus making it an essential ingredient in the management of acne and other keratinization diseases [3]. Salicylic Acid is a beta-hydroxy acid that contains exfoliating properties and is frequently used due to its capacity to penetrate the skin and unclog the pores hence preventing acne and facilitating healthy skin renewal. These actives can be used together to present a treatment option that meets the needs of skin care in both pigmentation and skin exfoliation, to acne and skin acne [4].

This review is intended to assess new developments in the RP-HPLC techniques of simultaneous determination of these three active components of dermatological products- Hydroquinone, Tretinoin, and Salicylic Acid. As the need to use high-quality and efficient analysis techniques continues to increase, this review will investigate the innovative techniques to be used to improve the separation, sensitivity and resolution of these ingredients in complicated topical matrices. Moreover, it will deal with the difficulties of analysis such as the interference of excipients and the degradation products, and also give results

on the recent developments in the development and validation of the methods, so that the results can be accurate and reproducible to measure the pharmaceutical quality [5].

## 2. Overview of the Actives

### Hydroquinone

**Chemical Properties:** Hydroquinone ( $C_6H_4(OH)_2$ ) is a phenolic compound that serves as a potent skin-lightening agent. It works by inhibiting the enzyme tyrosinase, which is involved in melanin production, thereby reducing pigmentation. Hydroquinone is highly soluble in water and alcohol but is notably sensitive to light and air, making it prone to photodegradation and oxidation. When exposed to light, it rapidly breaks down into less effective compounds, which can lead to a reduction in its therapeutic efficacy. This sensitivity to environmental conditions presents a significant challenge in formulating stable products [6].

**Therapeutic Uses:** Hydroquinone is widely used in dermatological treatments for hyperpigmentation disorders, such as melasma, age spots, and post-inflammatory hyperpigmentation. It is often employed in combination therapies with other actives like Tretinoin and Salicylic Acid to treat conditions such as acne and to improve overall skin tone. The combination of Hydroquinone with these actives enhances its effectiveness by addressing multiple skin concerns, including pigmentation, skin texture, and acne scars [7].

**Challenges in Analysis:** The primary challenge in analyzing Hydroquinone in topical formulations is its instability, especially due to its tendency to degrade when exposed to light. This instability complicates its quantification in formulations unless proper storage and packaging are used. Additionally, its phenolic nature can interact with excipients in the formulation, which may cause interference during chromatographic analysis. These interactions can affect retention times and lead to inaccurate quantification unless carefully accounted for during method development [8].

### Tretinoin

**Chemical Properties:** Tretinoin ( $C_{20}H_{28}O_2$ ) is a retinoid, a derivative of Vitamin A, and is highly sensitive to light, heat, and oxygen. It has an unsaturated carboxylic acid functional group, which makes it chemically reactive, particularly under conditions of light and oxidation. Tretinoin's sensitivity to environmental factors requires formulations to be carefully stabilized to prevent degradation. Despite its instability, Tretinoin is often formulated in alcohol-based solvents, which

can help to maintain its potency, but still require protection from light and air [9].

**Therapeutic Uses:** Tretinoin is primarily used in the treatment of acne, where it promotes cell turnover and reduces the formation of comedones. It is also used in anti-aging treatments due to its ability to accelerate skin regeneration and reduce wrinkles. When combined with Hydroquinone and Salicylic Acid, Tretinoin provides a comprehensive treatment approach, addressing pigmentation, acne, and skin texture. This combination is effective for individuals with acne scars, hyperpigmentation, and overall skin aging, as Tretinoin helps in renewing skin cells and enhancing the absorption of other actives [10].

**Challenges in Analysis:** Tretinoin's sensitivity to light presents significant analytical challenges, as it can degrade upon exposure to UV radiation. This degradation can result in inaccurate quantification in formulations, especially if not handled carefully during chromatographic analysis. Furthermore, Tretinoin's interaction with excipients in topical formulations, such as oils and emulsifiers, can lead to complex matrix interference, which complicates its analysis. These challenges necessitate method development strategies that account for its instability and interaction with formulation components [11].

### Salicylic Acid

**Chemical Properties:** Salicylic Acid ( $C_7H_6O_3$ ) is a weak acid with both a phenolic group and a carboxylic acid group, making it amphipathic (both hydrophilic and lipophilic). This allows it to penetrate the skin and act as a keratolytic agent. It is lipophilic enough to dissolve in oils and penetrate the skin barrier, while also being able to exfoliate the outer layers of the skin. However, its pH sensitivity can influence its solubility and stability in formulations. Salicylic Acid is more stable than Hydroquinone and Tretinoin but can still undergo degradation when exposed to high temperatures or prolonged light exposure [12].

**Therapeutic Uses:** Salicylic Acid is primarily used for its keratolytic action, which helps in treating acne, warts, and other skin conditions where clogged pores are a concern. It is effective in exfoliating the skin, promoting the shedding of dead skin cells, and preventing the formation of comedones. In combination with Hydroquinone and Tretinoin, Salicylic Acid enhances the exfoliation process, which facilitates the absorption of other active ingredients and improves the overall appearance of the skin by preventing the buildup of dead skin cells [13].

**Table 1: Key Properties and Challenges of Each Active Ingredient [15]**

| Active Ingredient | Chemical Properties                          | Therapeutic Uses                  | Challenges in Analysis                         |
|-------------------|----------------------------------------------|-----------------------------------|------------------------------------------------|
| Hydroquinone      | Phenolic compound, prone to photodegradation | Skin lightening, acne treatment   | Photodegradation, interaction with excipients  |
| Tretinoin         | Retinoid, sensitive to light and oxygen      | Acne treatment, anti-aging        | Light instability, complex matrix interference |
| Salicylic Acid    | Weak acid, lipophilic, pH sensitive          | Acne treatment, keratolytic agent | pH sensitivity, co-elution with excipients     |

**Challenges in Analysis:** The pH sensitivity of Salicylic Acid is one of the key challenges in its analysis. Changes in pH can affect its solubility, retention time, and peak detection in chromatographic analysis. Additionally, Salicylic Acid can co-elute with excipients or degradation products in complex formulations, which can lead to false peaks or inaccurate quantification. Analytical methods must be carefully optimized to account for these potential issues, ensuring that Salicylic Acid is accurately measured in the presence of other ingredients (Table 1) [14].

### 3. Analytical Challenges in Simultaneous Quantification Matrix Complexity

Topical formulations, such as creams, gels, and lotions, are composed of a wide range of excipients, oils, emulsifiers, and other compounds that serve to stabilize, moisturize, or enhance the delivery of the active ingredients. These excipients can significantly interfere with the analysis of active ingredients like Hydroquinone, Tretinoin, and Salicylic Acid during chromatographic separation [16]. For instance, emulsifiers used in cream formulations may cause baseline drift or generate broad peaks, making it difficult to isolate the desired peaks for accurate quantification. Additionally, oils and fatty substances used to enhance skin penetration can lead to matrix effects that alter retention times or intensify signal noise.

These matrix effects, combined with the complex nature of topical products, pose substantial challenges for analysts, as they must ensure that the analytical method is robust enough to handle the interactions between actives and excipients without compromising the precision or sensitivity of the quantification [17].

### Separation Issues

One of the most significant challenges in the simultaneous analysis of Hydroquinone, Tretinoin, and Salicylic Acid using RP-HPLC is the potential for co-elution, peak tailing, or overlapping retention times. Each active ingredient has distinct chemical properties, but their similarities in structure (e.g., the phenolic group in Hydroquinone and Salicylic Acid) can result in co-elution during chromatographic separation, leading to broad peaks or overlapping signals. Tretinoin, with its distinct retinoid structure, presents its own challenge in terms of retention time, as it is less polar than Hydroquinone or Salicylic Acid [18]. If the separation of these actives is not optimized, peak overlap or tailing can occur, causing difficulties in quantification. Achieving optimal separation in a short analysis time is essential for the efficiency of the method, and fine-tuning the mobile phase composition and flow rate is often required to resolve these separation issues [19].

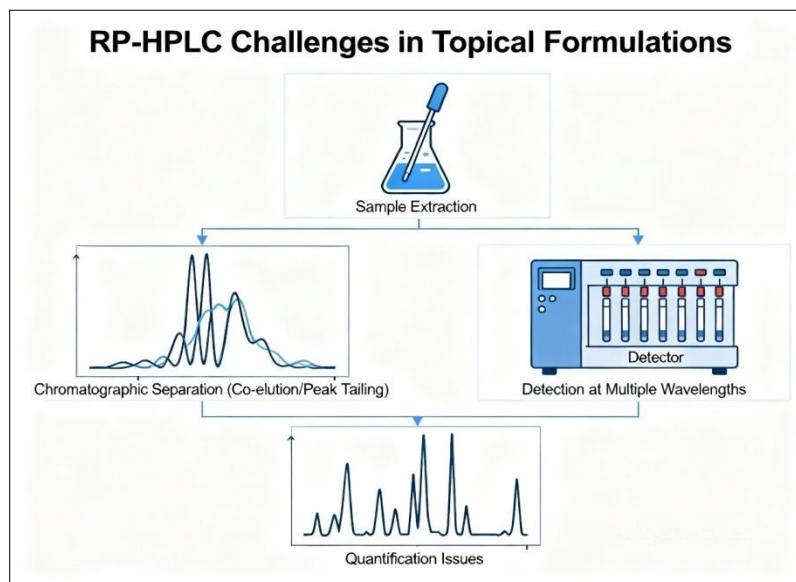



Figure 1: Schematic Representation of Typical Challenges in RP-HPLC Analysis of Topical Formulations [24]

### Detection Sensitivity

Hydroquinone, Tretinoin, and Salicylic Acid each exhibit different UV absorbance characteristics, which adds to the complexity of simultaneous detection. Hydroquinone and Tretinoin have distinct UV absorbance wavelengths, with Hydroquinone typically being detected at around 265 nm, and Tretinoin at 350 nm. Salicylic Acid, on the other hand, absorbs UV light around 296 nm [20]. This variation in absorbance peaks makes it challenging to detect all three compounds simultaneously without using multiple wavelengths or a

photodiode array (PDA) detector. Achieving optimal sensitivity for each compound while minimizing interference requires careful selection of the detection wavelength, and may involve the use of gradient elution or a PDA to monitor multiple wavelengths simultaneously, further complicating the analytical process [21].

### Extraction Challenges

The preparation of samples for RP-HPLC analysis in dermatological formulations can be particularly challenging

due to the semi-solid and complex nature of the matrices. Creams and ointments, which are typically used for delivering Hydroquinone, Tretinoin, and Salicylic Acid, often require extraction techniques that can efficiently isolate the actives from the base without introducing contamination or loss of analyte (Fig. 1) [22]. Extractions from such matrices can be difficult because of the high lipid content, emulsifiers, and stabilizers used in these products, which can interfere with the detection of the active compounds. Solvent selection, extraction time, and the method used (e.g., liquid-liquid extraction or solid-phase extraction) must be carefully optimized to ensure the actives are sufficiently separated from the matrix while maintaining recovery rates close to 100%. If not properly optimized, these extraction challenges can lead to incomplete extraction, low recovery, and ultimately, poor quantification accuracy [23].

#### 4. Recent RP-HPLC Methods for Simultaneous Quantification

The development of robust and efficient RP-HPLC methods for the simultaneous quantification of Hydroquinone, Tretinoin, and Salicylic Acid in dermatological formulations has been a focus of recent studies. The chromatographic conditions, such as column selection, mobile phase composition, and detection wavelengths, play a crucial role in achieving high resolution, accuracy, and sensitivity for all three active ingredients. This section explores various studies that have employed RP-HPLC methods for the simultaneous analysis of these actives, highlighting key elements such as column types, mobile phases, detection wavelengths, and method validation results [25].

##### Column Selection

The column is one of the most critical components in ensuring the separation and resolution of Hydroquinone, Tretinoin, and Salicylic Acid in complex dermatological formulations. Various column types have been employed to achieve optimal separation and retention.

- **C18 Columns:** The C18 column is one of the most widely used in RP-HPLC due to its ability to separate a wide range of compounds, including both polar and non-polar actives. The C18 column is particularly effective for separating Tretinoin (less polar) from Hydroquinone (moderately polar) and Salicylic Acid (weakly acidic and moderately polar). Columns with longer lengths (250 mm) and larger particle sizes (5  $\mu\text{m}$ ) provide excellent resolution, while shorter columns with smaller particles (3  $\mu\text{m}$ ) can reduce analysis time without sacrificing resolution [26].
- **Inertsil ODS Columns:** Inertsil ODS columns are another popular choice, particularly for more complex formulations. Their unique surface chemistry minimizes nonspecific interactions with compounds, reducing interference and improving the sensitivity of the analysis. These columns are

particularly effective for highly polar actives like Salicylic Acid, which requires careful handling to avoid co-elution with excipients [27].

##### Mobile Phase Composition

The mobile phase plays a vital role in achieving optimal retention, resolution, and peak shape during the chromatographic process. Several studies have employed different mobile phase compositions, often consisting of a mixture of aqueous buffers and organic solvents, to separate Hydroquinone, Tretinoin, and Salicylic Acid.

- **Phosphate Buffer and Acetonitrile:** One of the most common mobile phase compositions for these actives consists of 80% phosphate buffer and 20% acetonitrile. This composition helps to maintain the necessary pH for Tretinoin stability while providing sufficient organic content to separate the less polar components like Tretinoin from more polar compounds like Hydroquinone. This mixture has been shown to provide excellent resolution for the three actives in dermatological formulations [28].
- **Methanol and Phosphate Buffer:** In some cases, a mixture of 70% methanol and 30% phosphate buffer is used. Methanol, being a more potent solvent, helps improve the separation of polar compounds, such as Salicylic Acid, while reducing the retention time for all actives. This composition has been particularly effective in achieving high resolution in a shorter time frame [29].
- **Water and Acetonitrile:** For faster analysis, a 50% water and 50% acetonitrile mixture is sometimes used. This composition allows for efficient separation while reducing the overall analysis time. It has been found effective for faster elution of less complex mixtures, but may not always provide the best separation for more complex topical formulations [30].

##### Detection Wavelengths

The detection wavelengths for Hydroquinone, Tretinoin, and Salicylic Acid vary due to their distinct UV absorbance characteristics. Selecting the optimal detection wavelength is crucial for achieving high sensitivity and ensuring accurate quantification.

- **Hydroquinone and Tretinoin (265 nm):** Hydroquinone and Tretinoin have strong absorbance at 265 nm, making this wavelength optimal for their simultaneous detection. However, because both compounds have similar UV absorbance profiles, careful method development is required to prevent interference and ensure distinct peak identification [31].

- Salicylic Acid (296 nm):** Salicylic Acid exhibits a UV absorbance peak at 296 nm. Since this wavelength is distinct from those of Hydroquinone and Tretinoin, it allows for the simultaneous detection of all three actives without significant interference. The challenge, however, lies in the relatively lower sensitivity of Salicylic Acid compared to Hydroquinone and Tretinoin, which requires careful optimization of the detection parameters to enhance the signal [32].

- Photodiode Array (PDA) Detectors:** In some studies, PDA detectors have been used to monitor multiple wavelengths simultaneously, allowing for the detection of all three actives at their optimal absorbance wavelengths. This approach improves the sensitivity and reliability of the analysis, particularly when dealing with complex formulations [33].

**Table 2: Comparison of RP-HPLC Methods for Simultaneous Quantification [34]**

| <b>Study</b> | <b>Column Type</b> | <b>Mobile Phase Composition</b>        | <b>Detection Wavelength</b>      | <b>Method Validation Results</b>           |
|--------------|--------------------|----------------------------------------|----------------------------------|--------------------------------------------|
| Study 1      | C18 (250mm, 5µm)   | 80% Phosphate buffer, 20% Acetonitrile | 265 nm (Hydroquinone, Tretinoin) | Linearity: $R^2 = 0.999$ ; LOD = 0.5 µg/mL |
| Study 2      | Inertsil ODS       | 70% Methanol, 30% Phosphate buffer     | 296 nm (Salicylic Acid)          | Precision: %RSD = 1.5%                     |
| Study 3      | C18 (150mm, 3µm)   | 50% Water, 50% Acetonitrile            | 280 nm (Tretinoin)               | Recovery: 98-102%                          |
| Study 4      | C18 (250mm, 3µm)   | 75% Phosphate buffer, 25% Methanol     | 265 nm (Hydroquinone, Tretinoin) | Linearity: $R^2 = 0.998$ ; LOD = 0.3 µg/mL |
| Study 5      | Inertsil ODS       | 80% Water, 20% Acetonitrile            | 296 nm (Salicylic Acid)          | Precision: %RSD = 1.2%; Recovery: 99%      |
| Study 6      | C18 (150mm, 3µm)   | 60% Phosphate buffer, 40% Methanol     | 280 nm (Tretinoin)               | Linearity: $R^2 = 0.997$ ; LOD = 0.8 µg/mL |

- Linearity:** Studies 1, 4, and 6 show excellent linearity ( $R^2 > 0.997$ ), demonstrating that the methods are suitable for quantifying the actives over a wide range of concentrations.
- Precision:** Studies 2 and 5 reported low RSD values (1.5% and 1.2%, respectively), indicating high reproducibility in the quantification of Salicylic Acid and other actives.
- Recovery:** Study 3 achieved a recovery rate of 98-102%, demonstrating that the method is accurate and reliable for the quantification of Tretinoin in complex formulations (Table 2).

## 5. Trends and Innovations in RP-HPLC for Dermatological Applications

The field of High-Performance Liquid Chromatography (HPLC) has witnessed significant advancements in recent years, driven by the need for faster, more efficient, and environmentally friendly methods for analyzing complex dermatological formulations. These innovations, such as the rise of Ultra High-Performance Liquid Chromatography (UHPLC), the development of advanced detectors, and the push toward automation and green chemistry, have all contributed to improving the precision, speed, and sustainability of RP-HPLC methods [35].

### Ultra High-Performance Liquid Chromatography (UHPLC)

Ultra High-Performance Liquid Chromatography (UHPLC) represents a significant advancement over traditional HPLC, offering several benefits, particularly for the simultaneous

analysis of active ingredients in dermatological formulations. One of the main advantages of UHPLC is its ability to provide faster run times, which is achieved by using smaller particle sizes (sub-2 µm) in the chromatographic columns. The smaller particles result in increased surface area and better column efficiency, which translates to shorter analysis times while maintaining or even improving the resolution and separation of the actives [36].

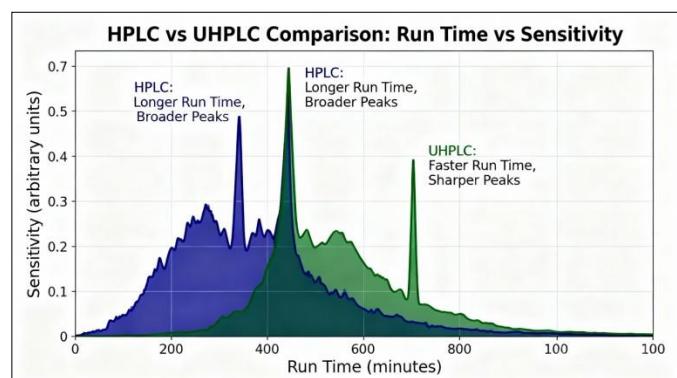
In traditional HPLC, columns typically use particles sized around 5 µm, but with UHPLC, the use of sub-2 µm particles allows for more efficient interactions between the sample and the stationary phase. This leads to sharper peaks and faster elution, which can significantly reduce the time required for method development and routine analysis. Additionally, UHPLC requires lower flow rates, resulting in a reduction in solvent consumption, making it a more environmentally friendly alternative to traditional HPLC methods. This is particularly beneficial in high-throughput laboratories where rapid analysis of multiple samples is required [37].

In the context of dermatological applications, UHPLC is particularly advantageous as it allows for quicker analysis of complex formulations without sacrificing accuracy or resolution. For example, the simultaneous quantification of Hydroquinone, Tretinoin, and Salicylic Acid can be achieved in a fraction of the time compared to traditional HPLC methods, enabling faster quality control and more efficient product development [38].

### Advanced Detectors

The development of advanced detectors has also played a crucial role in improving the sensitivity and selectivity of RP-

HPLC methods, especially in the simultaneous analysis of multiple actives. Photodiode Array (PDA) detectors and multi-wavelength detectors are among the most significant innovations in this area.


- **Photodiode Array (PDA) Detectors:** A PDA detector allows for the detection of multiple compounds at different wavelengths simultaneously, which is particularly useful when analyzing mixtures of active ingredients with different absorbance profiles. In the case of Hydroquinone, Tretinoin, and Salicylic Acid, the PDA detector can monitor the absorbance at different wavelengths (265 nm for Hydroquinone, 296 nm for Salicylic Acid, and 280 nm for Tretinoin) without the need to switch detection wavelengths during the analysis. This not only improves the accuracy of the analysis but also reduces the analysis time since the detector can simultaneously measure the peaks for all three actives [39].
- **Multi-Wavelength Detectors:** These detectors can monitor multiple wavelengths at once, providing enhanced sensitivity and better resolution for complex formulations. The ability to detect the three active ingredients at their optimal wavelengths improves the overall sensitivity and reduces the likelihood of interference from excipients or degradation products in the sample matrix [40].

### Automation and Green Chemistry

There is an increasing shift toward automation and green chemistry in the field of RP-HPLC, particularly in dermatological analysis. Automation in sample preparation and analysis offers significant advantages in terms of reproducibility, efficiency, and throughput. Automated systems can handle repetitive tasks such as sample dilution, extraction, and injection, reducing human error and increasing the consistency of results. This is particularly valuable in high-throughput environments, such as pharmaceutical laboratories, where a large number of samples need to be processed daily [41].

In terms of green chemistry, there is a growing movement toward reducing the environmental impact of chromatographic analyses. This includes the use of eco-friendly solvents, such as water or less hazardous organic solvents, in place of traditional solvents like acetonitrile and methanol, which are often toxic and require special disposal methods. The reduction in solvent usage not only makes RP-HPLC more environmentally sustainable but also helps to cut down on operational costs in the long term [42].

The adoption of green chromatography techniques, combined with advancements in UHPLC and automation, has the potential to make RP-HPLC methods more efficient, cost-effective, and environmentally responsible, benefiting both the laboratory and the broader community (Fig. 2) [43].



**Figure 2: Comparison of HPLC vs. UHPLC in Terms of Run Time and Sensitivity** [44]

### 6. Gaps and Future Directions

Although significant advancements have been made in the field of RP-HPLC for the simultaneous quantification of active ingredients in dermatological formulations, several key areas still require further research and development. These gaps present opportunities for future innovation in the analytical methodologies used to quantify Hydroquinone, Tretinoin, and Salicylic Acid, as well as in the broader context of sustainable and stability-indicating techniques for dermatological products [45].

#### Salicylic Acid in Combination with Hydroquinone and Tretinoin: Limited Research

While Hydroquinone, Tretinoin, and Salicylic Acid are frequently used together in dermatological treatments for acne, hyperpigmentation, and other skin conditions, there is still a lack of comprehensive methods for their simultaneous quantification in one analytical procedure. Most studies focus on the quantification of two of these actives at a time, but few methods address the simultaneous quantification of all three in a single run. This gap is particularly important in formulations where all three actives are present in varying concentrations. Developing a method that can accurately and efficiently quantify these three compounds together would streamline the analysis of complex dermatological products and improve quality control processes in pharmaceutical labs [46].

#### Stability-Indicating Methods: A Need for Research

A critical gap in current RP-HPLC methodologies is the lack of stability-indicating methods that can assess the degradation of active ingredients in dermatological formulations over time. Both Tretinoin and Hydroquinone are known to degrade under light, heat, and oxygen exposure, and such degradation can affect the therapeutic efficacy of the formulation [47]. Stability-indicating methods are essential not only for assessing the concentration of actives but also for evaluating the shelf life and performance of dermatological products under various storage conditions. Future research should focus on developing and validating stability-indicating RP-HPLC methods that can simultaneously quantify actives while also

monitoring their degradation, which would enhance the quality and reliability of dermatological treatments [48].

### Green Chemistry in HPLC: Sustainability Concerns

Another important direction for future research is the integration of green chemistry principles into RP-HPLC methods. Traditional HPLC methods often require the use of organic solvents, which are both costly and harmful to the environment. With the increasing focus on sustainability in pharmaceutical manufacturing and analytical processes, there

is a growing need for methods that use fewer solvents, lower energy consumption, and reduce the use of hazardous reagents. The development of green chromatography methods, including the use of eco-friendly solvents and solvent-free extraction techniques, is essential for reducing the environmental impact of analytical processes. By focusing on sustainable practices, the pharmaceutical industry can contribute to environmental conservation while maintaining high analytical standards (Table 3) [49].

**Table 3: Future Research Directions [50]**

| Gap                                                                      | Suggested Future Research                                                                              | Details and Focus Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limited methods for Hydroquinone, Tretinoin, and Salicylic Acid together | Develop more efficient simultaneous quantification methods including all three actives.                | <ul style="list-style-type: none"> <li>Explore the use of UHPLC or micro-HPLC with sub-2 <math>\mu</math>m particle sizes to enhance separation efficiency.</li> <li>Investigate mixed-mode columns (e.g., C30 columns) for better selectivity in separating the actives.</li> <li>- Optimize sample preparation techniques (e.g., SPE) for better extraction of actives from complex matrices.</li> <li>Develop methods that track the degradation of Hydroquinone, Tretinoin, and Salicylic Acid under various conditions (light, temperature, humidity).</li> <li>Integrate forced degradation studies into RP-HPLC methods to assess stability.</li> <li>- Standardize accelerated stability testing protocols for these compounds.</li> <li>Research alternative solvents such as ethanol, glycerol, or ionic liquids to replace acetonitrile and methanol.</li> <li>Develop methods to reduce solvent volumes while maintaining resolution, such as using aqueous mobile phases or gradient elution.</li> <li>- Explore the use of supercritical fluid chromatography (SFC) or green solvents in sample preparation.</li> </ul> |
| Lack of stability-indicating methods                                     | Research on stability-indicating methods for dermatological products to monitor degradation over time. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Green chromatography                                                     | Focus on reducing solvent usage and using eco-friendly mobile phases, solvents, and reagents.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## CONCLUSION

In this review, we have discussed the analytical challenges associated with the simultaneous quantification of Hydroquinone, Tretinoin, and Salicylic Acid in dermatological formulations using RP-HPLC. These challenges include matrix complexity, separation issues such as co-elution and peak tailing, as well as detection sensitivity due to the varying UV absorbance wavelengths of the actives. Advancements in RP-HPLC, including the rise of UHPLC, the development of advanced detectors like PDA, and the incorporation of green chromatography principles, have significantly enhanced the speed, sensitivity, and sustainability of these methods.

Method validation results from recent studies show promising outcomes in terms of linearity, precision, and recovery, demonstrating the robustness and reliability of these analytical techniques. Trends such as automation and eco-friendly solvents are shaping the future of RP-HPLC, making it more efficient and environmentally sustainable.

Improving analytical techniques for combination therapies is crucial for the accurate and efficient quantification of multiple actives in complex formulations. These advancements not only

support pharmaceutical development by ensuring product quality but also have a direct impact on patient care, enabling the delivery of safer, more effective dermatological treatments.

**ACKNOWLEDGEMENT:** Nil

**CONFLICT OF INTEREST:** Nil

## REFERENCES:

1. Bogdan C, Molnar M, Dima EI, Olteanu AA, Safta DA, Moldovan ML. Marine macroalgae in topical formulations: Bioactive compounds, variability, analytical challenges and skin benefits. *Pharmaceutics*. 2025 Aug 31;17(9):1143.
2. Basak S, Das P. Reverse Phase High-performance Liquid Chromatography: A Comprehensive Review of Principles, Instrumentation, Analytical Procedures, and Pharmaceutical Applications. *Journal of Preventive, Diagnostic and Treatment Strategies in Medicine*. 2025 Apr 1;4(2):83-92.
3. Adebusoye OC, Srivastava G. Clinical approaches in vogue for combination therapies for acne and post-inflammatory hyperpigmentation—A comprehensive review. *Cosmoderma*. 2025 Jan 10;5.
4. Arif T. Salicylic acid as a peeling agent: a comprehensive review. *Clinical, cosmetic and investigational dermatology*. 2015 Aug 26:455-61.

5. Siddiqui Z, Zufall A, Nash M, Rao D, Hirani R, Russo M. Comparing tretinoin to other topical therapies in the treatment of skin photoaging: a systematic review. *American Journal of Clinical Dermatology*. 2024 Nov;25(6):873-90.
6. Alvitha S, Ervianingsih E, Zahran I. Analysis Of Hydroquinone Content In Hand Body Products Circulating In Palopo City Using Uv-Vis Spectrophotometric Method. InInternational Conference of Business, Education, Health, and Scien-Tech 2024 Oct 30 (Vol. 1, No. 1, pp. 2274-2281).
7. Charoo NA. Hyperpigmentation: looking beyond hydroquinone. *Journal of Cosmetic Dermatology*. 2022 Oct;21(10):4133-45.
8. Khadivi Y, Saeedpour M, Arjmandmazidi S, Nemati M, Monajjemzadeh F. Quantification of Arbutin and its degradation products, hydroquinone and p-Benzquinone, in hyperpigmentation topical formulation: Effect of extraction procedure and interference assessment. *Journal of Pharmaceutical and Biomedical Analysis*. 2024 Aug 15;246:116223.
9. Sahrai H, Kian R, Shamkhali AN, Kheradmand R, Zakerhamidi MS. Evaluation of solvent effect on the effective interactions of Isotretinoin and Tretinoin: Isomeric forms of vitamin A. *Heliyon*. 2024 Feb 15;10(3).
10. Chivot M. Retinoid therapy for acne: a comparative review. *American journal of clinical dermatology*. 2005 Feb;6(1):13-9.
11. Kryczyk-Poprawa A, Kwiecień A, Opoka W. Photostability of topical agents applied to the skin: A review. *Pharmaceutics*. 2019 Dec 20;12(1):10.
12. Ouafy HE, Aamor M, Oubenali M, Mbarki M, Haimouti AE, Ouafy TE. Theoretical study of the stability and reactivity of salicylic acid isomers by the DFT method. *Curr. Chem. Lett.*. 2022;11(2):183-90.
13. Aravinda Kumar B. Dermatological pharmacology. InIntroduction to Basics of Pharmacology and Toxicology: Volume 2: Essentials of Systemic Pharmacology: From Principles to Practice 2021 Mar 14 (pp. 1129-1148). Singapore: Springer Nature Singapore.
14. Hatambeygi N, Abedi G, Talebi M. Method development and validation for optimised separation of salicylic, acetyl salicylic and ascorbic acid in pharmaceutical formulations by hydrophilic interaction chromatography and response surface methodology. *Journal of Chromatography A*. 2011 Sep 2;1218(35):5995-6003.
15. Ubbink J, Krüger J. Physical approaches for the delivery of active ingredients in foods. *Trends in Food Science & Technology*. 2006 May 1;17(5):244-54.
16. Barnes TM, Mijaljica D, Townley JP, Spada F, Harrison IP. Vehicles for drug delivery and cosmetic moisturizers: review and comparison. *Pharmaceutics*. 2021 Nov 26;13(12):2012.
17. Čižinauskas V, Elie N, Brunelle A, Briedis V. Skin penetration enhancement by natural oils for dihydroquercetin delivery. *Molecules*. 2017 Sep 12;22(9):1536.
18. Taofiq O, González-Paramás AM, Barreiro MF, Ferreira IC. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. *Molecules*. 2017 Feb 13;22(2):281.
19. Liu S, Yi LZ, Liang YZ. Traditional Chinese medicine and separation science. *Journal of Separation Science*. 2008 Jun;31(11):2113-37.
20. Khairy MA, Hamad A, Hamed M, Locatelli M, Mansour FR. A stability indicating RP-HPLC-UV assay method for the simultaneous determination of hydroquinone, tretinoin, hydrocortisone, butylated hydroxytoluene and parabens in pharmaceutical creams. *Journal of Pharmaceutical and Biomedical Analysis*. 2024 May 15;242:116021.
21. Es'haghi Z. Photodiode array detection in clinical applications; quantitative analyte assay advantages, limitations and disadvantages. *Photodiodes-Communications, Bio-Sensings, Measurements and High-Energy Physics*. 2011 Sep 6:161-82.
22. Raj Seeha R, Chauhan S, Mann P. Analytical Review on Chromatographic Based Estimation of Hydrocortisone and Camphor in Topical Dosage Forms. *International Journal of Innovative Science and Research Technology*. 2025 Jun 14;10(6):556-67.
23. Câmara JS, Perestrello R, Berenguer CV, Andrade CF, Gomes TM, Olayanju B, Kabir A, MR Rocha C, Teixeira JA, Pereira JA. Green extraction techniques as advanced sample preparation approaches in biological, food, and environmental matrices: a review. *Molecules*. 2022 May 6;27(9):2953.
24. Bhalerao A, Shelke MS, Borkar V. Advances, Applications, and Challenges in RP HPLC Method Development. *International Journal of Advanced Research in Science, Communication, and Technology*. 2023;3:111-23.
25. Shaikh Z, Gadhave O, Salunke B, Aher S, Shewale H, Nagare N, Shaikh MR. ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF RP-HPLC FOR TRETINOIN ESTIMATION. InInternational Conference on Harmonization (ICH). Analytical methods must be verified for specificity 2025 Apr (Vol. 18, No. 2, pp. 981-988).
26. Zuvela P, Skocylas M, Jay Liu J, Bączek T, Kalisz R, Wong MW, Buszewski B. Column characterization and selection systems in reversed-phase high-performance liquid chromatography. *Chemical reviews*. 2019 Jan 3;119(6):3674-729.
27. Kuroda I, Nagai T, Mizobe H, Yoshimura N, Gotoh N, Wada S. HPLC separation of triacylglycerol positional isomers on a polymeric ODS column. *Analytical Sciences*. 2008 Jul;24(7):865-9.
28. Subirats X, Rosés M, Bosch E. On the Effect of Organic Solvent Composition on the pH of Buffered HPLC Mobile Phases and the p K a of Analytes—A Review. *Separation & Purification Reviews*. 2007 Aug 1;36(3):231-55.
29. Paabo M, Robinson RA, Bates RG. Reference buffer solutions for pH measurements in 50% methanol. Dissociation constants of acetic acid and dihydrogen phosphate ion from 10 to 40°. *Journal of the American Chemical Society*. 1965 Feb;87(3):415-8.
30. Venables DS, Schmuttenmaer CA. Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol. *The Journal of Chemical Physics*. 2000 Dec 22;113(24):11222-36.
31. Ibrahim F, Sharaf El-Din MK, El-Deen AK, Shimizu K. A new HPLC-DAD method for the concurrent determination of hydroquinone, hydrocortisone acetate and tretinoin in different pharmaceuticals for melasma treatment. *Journal of chromatographic science*. 2019 Jul 1;57(6):495-501.
32. Hsieh PW, Aljuffali IA, Fang CL, Chang SH, Fang JY. Hydroquinone-salicylic acid conjugates as novel anti-melasma actives show superior skin targeting compared to the parent drugs. *Journal of Dermatological Science*. 2014 Nov 1;76(2):120-31.
33. Zgórska G, Kawka S. Application of conventional UV, photodiode array (PDA) and fluorescence (FL) detection to

analysis of phenolic acids in plant material and pharmaceutical preparations. *Journal of Pharmaceutical and Biomedical Analysis*. 2001 Mar 1;24(5-6):1065-72.

34. Attimarad M, Venugopala KN, Islam MM, Shafi S, Altaysan AI. Rapid simultaneous quantitative analysis of Hypoglycemic agents by RP HPLC: Development, validation and application to medicine. *Indian Journal of Pharmaceutical Education and Research*. 2022 Apr 1;56(2):564-72.

35. Siddique I. High-performance liquid chromatography: comprehensive techniques and cutting-edge innovations. *European Journal of Advances in Engineering and Technology*. 2023 Sep 30;10(9):66-70.

36. Pawar A. Recent Innovations in High-Performance Liquid Chromatography (HPLC): Method Development and Validation Strategies. *Journal of Drug Delivery and Biotherapeutics*. 2024 Aug 25;1(01):55-61.

37. Fekete S, Schappeler J, Veuthey JL, Guillarme D. Current and future trends in UHPLC. *TrAC Trends in Analytical Chemistry*. 2014 Dec 1;63:2-13.

38. Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in ultra-high-resolution mass spectrometry for pharmaceutical analysis. *Molecules*. 2023 Feb 22;28(5):2061.

39. Gluckman JC, Novotny MV. Principles and Applications of Photodiode Array Fluorescence Detection in Microcolumn LC. In *Microbore Column Chromatography* 2020 Aug 26 (pp. 145-173). CRC Press.

40. Melkonian JM, Armougom J, Raybaut M, Dherbecourt JB, Gorju G, Cézard N, Godard A, Pašiškevičius V, Coetzee R, Kadlčák J. Long-wave infrared multi-wavelength optical source for standoff detection of chemical warfare agents. *Applied optics*. 2020 Dec 8;59(35):11156-66.

41. Nanda BP, Chopra A, Kumari Y, Narang RK, Bhatia R. A comprehensive exploration of diverse green analytical techniques and their influence in different analytical fields. *Separation Science Plus*. 2024 Apr;7(4):2400004.

42. Korany MA, Mahgoub H, Haggag RS, Ragab MA, Elmallah OA. Green chemistry: Analytical and chromatography. *Journal of Liquid Chromatography & Related Technologies*. 2017 Oct 2;40(16):839-52.

43. Shaikh F, Uzgare A. HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC): PRINCIPLE, APPLICATIONS, AND THE ROLE OF ARTIFICIAL INTELLIGENCE-A REVIEW. *Journal of microbiology, biotechnology and food sciences*. 2025 Dec 5:e13541-.

44. Gumustas M, Kurbanoglu S, Uslu B, Ozkan SA. UPLC versus HPLC on drug analysis: advantageous, applications and their validation parameters. *Chromatographia*. 2013 Nov;76(21):1365-427.

45. Anjani QK, Demartis S, Volpe-Zanutto F, Li H, Sabri AH, Gavini E, Donnelly RF. Fluorescence-coupled techniques for determining rose bengal in dermatological formulations and their application to ex vivo skin deposition studies. *Pharmaceutics*. 2023 Jan 25;15(2):408.

46. dos Santos Marubayashi BA, Simoni SE, de Fariña LO. Topical treatments for acne: a bibliographic review. *Brazilian Journal of Health Review*. 2021 Feb 28;4(1):3910-22.

47. Shahnawaz SA, Shaikh A. Stability Indicating HPLC Method Development: A Research Journal of Pharmacy and Medical Sciences (IRJPMS). 2025;8(3):26-33.

48. Ioele G, Tavano L, Luca MD, Muzzalupo R, Mancuso A, Ragno G. Light-sensitive drugs in topical formulations: Stability indicating methods and photostabilization strategies. *Future Medicinal Chemistry*. 2017 Oct 1;9(15):1795-808.

49. Abd-Elhafeez M, Arafa MM, Amro FH, Youssef FS. Green analytical chemistry to eco-friendly HPLC techniques in pharmaceutical analysis: A review. *Egyptian Journal of Veterinary Sciences*. 2024 May 1;55(3):795-801.

50. Bogers M, Afuah A, Bastian B. Users as innovators: A review, critique, and future research directions. *Journal of management*. 2010 Jul;36(4):857-75.

#### How to Cite this article:

Kashyap V, Avasthi G. Recent advancements in high-performance liquid chromatography methods for simultaneous quantification of hydroquinone, tretinoin, and salicylic acid in dermatological formulations. *International Journal of Pharmaceutical Science and Medicine* 2025; 3(3): 76-84.